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Abstract--Three simple two-dimensional streaming motions of a mixture of solid particles with a 
continuous carrier fluid, or gas, in the presence of the gravity field are considered. These include flow 
of a mixture over an infinite stationary rigid plane perpendicular to the direction of the gravity field, 
flow near an oscillating rigid plane and flow in a mixture induced by a suddenly accelerated plane. 
The nature of the boundary conditions at the interface between a layer of sediment settling on the 
rigid boundary and the mixture above it suggests an introduction of the independent variables that 
enable simple analytical expressions for the solutions of the first two flows and a numerical solution 
by means of a Laplace transform in the last case. 

I. INTRODUCTION 

We consider three simple two-dimensional flows of a mixture of continuous fluid or gas with 
a cloud of spherical solid particles of approximately equal size, occurring in the presence of a 
gravity field. All three flows are induced by the boundary conditions introduced by the 
presence of the rigid boundary--an infinite plane with a unit normal antiparallel to the 
direction of the gravity field. Considered flow situations are counterparts of a single-phase 
flow over a stationary rigid plane, flow near an oscillating plane and flow induced in a fluid at 
rest by a suddenly accelerated plane. 

An attempt has been made to consider these simple flows on the basis of a continuum 
model of a suspension of solid particles in a carrier fluid; see e.g. Di Giovanni & Lee (1974), 
Ishii (1975) and Drew (1979, 1983). In these theories, the constituents are treated as 
superimposed continua and described by means of field variables and balance equations, 
obtained through an averaging procedure over regions containing sufficiently large numbers 
of solid particles. We thus write separate mass and momentum balance equations for each 
constituent of a mixture. The momentum equations for each phase are coupled through a 
fluid-solid interaction force, which is taken to be the classical Stokes drag on a single 
spherical particle and modified by a factor, accounting for a finite volume fraction of 
particles, obtained by Tam (I 969). 

The presence of the gravity field introduces separational motion of the phases in the 
direction perpendicular to the rigid plane, resulting in an origin of a growing layer of dense 
sediment on the plane. Considering the mass balance across the interface between this layer 
of sediment and the mixture above it, we obtain an expression describing the growth velocity. 
Further, we assume that the layer of sediment has the same horizontal motion as the rigid 
boundary and formulate thus boundary conditions for the mixture at the interface between 
the sediment and the mixture. The character of the boundary conditions suggests an 
introduction of a coordinate system with a horizontal axis coinciding with the interface, and 
thus propagating in the vertical direction with the velocity of the interface. Introducing 
accordingly new independent variables in an appropriate way, we simplify the momentum 
equations, which then allow simple analytical expressions for the solutions in the first two 
cases. Solution of the third flow situation is obtained by means of a numerical inversion of the 
solutions to the Laplace transformed momentum equations. 
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2. C O N S E R V A T I O N  E Q U A T I O N S  

We are considering here certain two-dimensional flows of a mixture of solid spherical 
particles homogeneously distributed in an incompressible carrier fluid, under the influence 
of a gravity field. The common condition for these flows is that the velocity component of the 
mixture at infinity, or the velocity of a moving boundary, is perpendicular to the direction of 
the gravity field, which introduces separational motion of the phases. 

The mixture is treated by a continuum approach to both constituents. We thus write 
separate equations of mass conservation and momentum balance for each phase. These 
average balance equations are formulated in terms of the following averaged variables: 
volume fraction of the dispersed phase a, phase velocities v~ and v~,, pressure pC and stress 
tensor of the continuous phase r,~k. The stress tensor of the dispersed phase is taken to be zero 
(see Drew 1983). 

a ,  + (ark = O, [11 

(1  - a ) . ,  + [ ( 1  - oz)v~ , l .k  = O, [21 

d d d d c 
ap (vk., + vk.,v,)  = a f ~  - otp.k + M~,  [31 

¢ C ¢ ¢ (1 - a)O¢(v'k.t + v ,~v , )  = (1 - a ) f ~ -  (1 - a)p.k + [(1 -- a)r,kl~. + M~, [4] 

where f ~  and f~  are the body forces per unit volume and M~ and M~ are the fluid-solid 
interaction forces per unit volume and are of the form 

M~ - f ( a ) F k ,  [5] 

M [  - - f ( a ) F k ,  [6] 

where Fk is the generalized drag force acting on a single particle and may include, besides the 
classical Stokes' drag, the shear-lift force, acting on a particle of the dispersed phase in a 
uniform shear field of the continuous fluid (see Saffman 1965), the virtual mass term (Zuber 
1964) and the spin-lift force induced by the inner rotation of a particle (Rubinow & Keller 
1961). Each of these forces, acting on a single particle, is modified by its own correction 
factor f ( , ) ,  accounting for the finite volume fraction of the dispersed phase. Under the 
present assumption of small-particle Reynolds number, however, the leading term in the 
generalized drag force is the classical Stokes' drag. All other drag forces will therefore be 
neglected in the present investigation. We thus may write 

- , ,  - [7] 

where K -- 4.5 andf(a)  is the correction factor accounting for the finite volume fraction of 
the dispersed phase, obtained by Tam (1969) in the case of spherical particles, and is of the 
form (per unit volume of the flow field) 

4 + 3(8a - 3ot2)  t/2 -t- 3or 
f (ot)  (2 - -  3or)  2 a .  [ 8 ]  

In the case of a two-dimensional flow of a mixture over a flat plate of infinite length and 
with the plane normal parallel to the direction of the gravity field, the flow variables are 
assumed to be functions of the vertical coordinate y and time t. 
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We next introduce a set of dimensionless variables, using the notations of Greenspan 
(1983), 

Y y ,  - - ,  [9] 
a 

Pa - -  Pc E - - ,  [10] 
Pc 

gal~l 
t ,  - ~ t ,  [111 

KP¢ 

and seek the solution in the form 

ga=l~l ~. - - [ U d ( t , , y , ) e x + V s ( t , , y , ) e y ] ,  [12] 
gP¢ 

ga21tl 
xv¢ [vAt,, y,);x + vat,, y,);,] ,  

Pc - - P c g Y  [1 - [ e  I P(t,) ] .  

[13] 

[14] 

Dropping the asterisk notation, we write the dimensionless form of the conservation 
equations of mass for each phase, 

d: a, + (etV#)j, - O, [15] 

c: - a ,  + [(1 - a)Vc]~ - 0, [16] 

and momentum for each phase, 

d, ex: (1 + OB[Ud, + V~U,o,] _ f (o t )  (U, - Ua), [17] 
ot 

c, L:  B[U,, + V~U,y] - - ~ U " -  f(oO (U, - Lid), [18] 

f(a) d ,~ /  (1 + *){J[Vd, + VdVay] - -V~] + P + a (v ,  - vd), [19] 

1 f ( . )  
c,~,: ~ [ v .  + v~v~]  - p + - v ~  + (v~ - v~), [201 

1 - a  

where 

ga~l~l a [2H 
g Pc KPc 

is the Reynolds number based on the particle size and the viscosity of the continuous phase. 

3. S T E A D Y  F L O W  O F  A M I X T U R E  O V E R  A N  I N F I N I T E  P L A N E  

We assume that the mixture of solid particles with a fluid flows over a solid boundary-- 
an infinite plane y - 0 with a unit normal antiparallel to the direction of the gravity field ~,. 
We assume further that there is not net flow in the direction parallel to the direction of 
gravity field, which introduces separational motion of the phases. Such a process is called 
batch sedimentation (see e.g. Wallis 1969). According to Kynch (1952), the vertical 
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sedimentation of solid particles may proceed in three varying ways, depending on the shape 
of the curve of the total particle flow rate versus the volumetric fraction of the particles. One 
of the possible ways is when a direct shock from the initial value of the concentration a to the 
final fully settled value aM is formed at the interface of a mixture and maximally 
concentrated dispersed phase, settled at the horizontal solid plane. In other cases, a region 
with a nonuniform concentration of the dispersed phase may be formed between the mixture 
with the initial concentration of particles at the top and maximally concentrated dispersed 
phase at the bottom. We are here going to investigate the first case, since it is easier to 
analyze but also quite common. We thus assume that the initial concentration of the 
dispersed phase is uniform and remains so throughout the process, in the region occupied by 
the mixture; in other words 

a ffi const. 

Equations of continuity for each phase give therefore 

v~ ,  = Vc,  - O, 

which simplifies the y-components of the momentum equations: 

[22] 

[23] 

d,  dy: (I + E)BVd, = - - ~ l  + P + (Vc - I'd), 

f ( c 0  
- - ( v ~ -  v~). c, ~j,: BY<, = P 1 - a 

[24] 

[251 

Since the overall volumetric flux in the y-direction is zero (batch sedimentation), we have 

,~v, + (] - ,~)v. - o. [26] 

Equations [24]-[26] with initial conditions 

Va(0) ffi V¢(0) - 0 [27] 

are readily integrated to give 

, o,, o>2[ ( )1 
V~- I~[ J ' ~ f  1 - e x p  - a ( 1 - a ) ' # [ l + ~ + a / ( l - a ) l t  , [281 

~ ,,2(] _ , , ) [  ( r(~)  )] 
vc = I~I / ( , , )  1 - exp - a ( l  - a)2B[l" + ~ + oe/(l - a) ] t  , [29] 

Plots of the vertical velocity components of both phases for various sets of flow variables 
are shown in figure I, which illustrates the adjustment of the vertical motion of the phases, 
imposed by the gravity field, to its stationary state. This adjustment occurs over a transient 
period, with a duration depending on the density ratio between the phases, the concentration 
of the dispersed phase and the value of the particle Reynolds number. We will subsequently 
assume, however, that the vertical motion of the phases has reached its steady state, with the 
verticle components of the velocities given by 

a(l  - a) 2 
V ,=  I ' I  f ( " )  ' [30] 

V c = l ~ l  £(~) ' [31] 
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Consider now the moving interface between the mixture at the top and the maximally 
concentrated dispersed phase at the bottom--a horizontal plane. Concentration of the 
dispersed phase in the mixture is a and in the region occupied by the sediment au ( a .  is ~0.6 
for spheres). Apply the conservation of mass for each component across the moving 
interface. If the velocity of the plane of discontinuity is V, then 

d: o~(V~ - V )  l_ + - O, [32]  

c: (1 - a ) ( V c  - V ) I _  + - O. [ 33 ]  

~2 

8 

b,l 
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Figure 1. Vertical velocities of the phases versus time. ( a )  a - 0 .01 , /~  - 0 .1 ,  E - 1000;  ( b )  a - 0 .01 ,  
- O. 1, ~ - 100; ( c )  a - 0 .01 ,  ,8 - 0 .1 ,  ~ - 1 O; ( d )  a - O. 1,/~ - 0 .1 ,  ~ - 10; ( e )  a - O. 1,/~ - 0 .01 ,  ~ - 

10; (iO c ~ -  0 . 5 , ~ -  0 .01 ,  ~ -  10. 

10 - 2  



680 N APAZIDIS 

At the interface between the mixture " + "  and the sediment " - , "  we have 

a + - of, a -  m a M  ' V ~  

which gives 

a ( l  - a )  2 e 4 2 ( 1  - a )  

I ,  I f ( a )  ' V ;  - O, V + = I ,  I f ( a )  ' V ;  - O, [341 

1 - a a e a 2 ( 1  - a )  2 
v - - v :  - - v ; =  [35] 

aM - a aM - a I E [ (au  - a ) f ( a )  

Consider now the x-components of the momentum equations 

d,~x: (1 + e)B[Ua, + VaU#y] =f(a---~) (U c - Ua), [361 
a 

c, "ex: fl[Ua + V~U~,] = ~U~yyl f(a)l_....~a (U~ - Ud), [37] 

In this section, we are imposing the following boundary conditions on the horizontal 
components of the velocities. We will assume the "no-slip" condition for the horizontal 
component of the velocity of the continuous phase in the mixture at the moving interface 

y = Vt,  [381 

between the mixture and the sediment at the bottom, which is assumed to be at rest with 
respect to the horizontal motion of the solid boundary y - O. Introducing a grouping 

- y - I t ,  [391 

this boundary condition may be formulated as 

U~ - O, 7/= O. [401 

The horizontal velocity component of the continuous phase at infinity y - +~o is equal to U: 

Uc = U, ~ = +o~, [41] 

W e  are thus seeking the steady-state distribution of Ua and Uc, satisfying momentum 
equations and boundary conditions. In this case, the independent variables t and y will 
appear in the solution in the combination introduced in [39] only, and the governing 
differential equations may thus be reduced from one of partial to one of the ordinary type, 
resulting in the following system: 

f ( a )  - ( l  + O ~ ( V -  Va)U'~ - ( t lc - Ua),  [42] 
a 

-~(V Vc)U~ 1 f ( a )  
- ' - - U': - -  (U~ - Ud). [ 4 3 ]  

K I - - a  

Equations [42] and [43] form a system of ordinary differential equations with constant 
coefficients. The general solution of such a system is obtained by finding the roots of the 
characteristic equation, being in this case an algebraic equation of the third degree. All three 
roots of the equation are real: 

~'1 z 0,  ~'2 > 0 ,  ~3 <: 0.  [44] 
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Choosing ~,t - 0 and X3 - ~, < 0 (since n >- 0 and determining the two arbitrary constants 

by means of [40] and [41], we obtain 

Uc - U(I - eX'), [45] 

and further using [43] 

l-or I - a~Z]e,.)" [46] Ua- U(1- [1- fl(V- Vc)"f~ ' -K~((~ 

Plots of Ud and Uc for various values of flow parameters  arc shown in figure 2. 
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HORZZONTAL VELOCITY CONPONENTS, Ud/U, Uc/U 
Figure 2. Steady flow over an infinite plane Horizontal velocity profiles of the phases. (a) a - 0.01, 
~ - 0 . 1 , E -  l O 0 0 ; ( b ) a -  0 . 0 1 , ~ -  O . I , E -  1 0 0 ; ( c ) a - O . O l , ~ -  0 . 1 , ~ -  1 0 ; ( d ) a -  0 . 1 , ~ -  O . l , e -  

10; (c) a - 0.1, ~ - 0.01, e - 10; (f) a - 0.5, ~ - 0.01, E - 10. 
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4. F L O W  IN A M I X T U R E  D U E  T O  A N  O S C I L L A T I N G  I N F I N I T E  P L A N E  

In this section, we assume that the infinite flat wall y = 0 executes linear harmonic 
oscillations parallel to its own direction. We thus suppose that the motion of the plane is 
given by 

Up,..~ - U cos oat. [47] 

By analogy with the previous section, we assume that the dense sediment, settled down on the 
plane under the influence of the gravity field, having a direction perpendicular to the plane, 
is at rest with respect to the horizontal motion of the plane, and therefore acquires the 
horizontal velocity component defined in [47]. Consider the moving interface between the 
sediment and the mixture, propagating upward with the velocity V, obtained in the previous 
section. Here, besides the vertical motion due to the settling process, the interface acquires 
the horizontal motion of the solid plane [47]. As before, we will assume the "no-slip" 
eonditon for the horizontal component of the velocity of the continuous phase at the moving 
interface, 

Uc = Ucos oat, r; = O, [48] 

whereas in the previous section, 

= y - Vt. [49] 

Upon introduction of the new independent variables t and 7/, the x-components of the 
momentum equations [36] and [37] take the form 

f ( a )  
a: (1 + d O [ u . , -  ( v -  v . ) u ~ . ]  = (u~ - u . ) ,  [50] 

Ol 

1 f ( a )  ( U ~ -  Ud). [51] c: /~ [ U .  - ( v - v~ ) u , j  = -~ u,,,, l - -S-~ 

Making use of the solution of the corresponding problem in the ease of a single-phase flow, 
we put 

Uc = Ue x" cos (oat + #T/), [52] 

Ud = [A cos (oat + ~*!) + B sin (oat + tLr/)] e x", [53] 

and seek the unknown constants h, g, A and B by substituting [52] and [53] into [50] and 
[51]. Note, however, that by contrast to the single-phase case, X :/: ~. Substitution of the 
assumptions [52] and [53] into [50] and [51] gives a system of four algebraic equations for 
A, B, X and ~: 

(l + ~ ) f l [ - ( V -  V.)hA - ( V -  V.)gB + oaB] f ( a )  ( U -  A).  
Ol 

( l  + d # [ ( v -  V . ) u A  - oaA - ( V -  V.)XS]  

[54] 

I 
- ~ ( v  - v c ) x u  - : (x ~ - u ' ) u  - "'a------L ( u  - A ) .  [56] 

x 1 - .  

t ~ [ ( v -  v ~ ) u u -  oau] 2X____~_~ U + f (o t )  B. [571 
K 1 - - O /  

f ( u )  - -  s ,  [55] 
o~ 
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T h e  last two equat ions  g ive  

683 

l - a (  ~ 2 - x 2  ) 
a = u + ~  K - ~ ( v - v . )  u, [58] 

1o(  ) 
B - f ( a )  + O . ( V -  Vc) - {$o~ U. [591 

Introducing [58] and [59] into [55] we obtain an algebraic equation of the second order 
for X, with the coefficients being functions of/~. The roots of this equation are real and of 
opposite signs. Choosing the negative root X (since ~ >.. 0) and introducing it into [54], we 
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Figure 3. Flow due to an mcillating infinite plane. Horizontal velocity profiles of the phases at 
different instants, a - 0.01, 0 - 0.01, E - 1000, w - 1.0. 
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eventually obtain an algebraic equation for # alone: 

F(~) - 0. [60] 

Plots of F versus # for various values of the flow parameters show that [60] has only one 
real root ~, the value of which is obtained numerically. Plots of the velocity profiles of the 
phases for various values of the flow parameters are shown in figures 3-9. 

5. F L O W  IN A M I X T U R E  I N D U C E D  BY A S U D D E N L Y  A C C E L E R A T E D  I N F I N I T E  
P L A N E  

Finally, we investigate the motion of a semiinfinite region occupied by mixture and 
bounded by a rigid plane y = 0, which is suddenly accelerated to a velocity U parallel to its 
own direction. 
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Figure 4. Flow due to an oscillating infinite plane. Horizontal velocity profiles of  the phases at 
different instants, a - 0.01, B - 0.01, ~ - 1000, w - 0.01. 
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We assume as before that the vertical motion of the phases introduced by the gravity 
field, perpendicular to the rigid boundary, is stationary, and the vertical velocity components 
of the phases are those given by [30] and [31]. Again we introduce the grouping 

,7 - y - v t ,  [ 6 1 ]  

where Vis the vertical velocity component of the moving interface between the sediment and 
the mixture, and is given by [35]. By analogy with the previous section, we assume that the 
layer of sediment settled on the rigid boundary moves together with the boundary in the 
horizontal direction and thus obtains a horizontal velocity component equal to U. 

50 50 

t~ 
O 

z 

e~ 

t=0,T 

/Uc/U 

-I 0 I 

u /u 
C ~  

-I 

50 50 

t=Tl2 

I I I 

1 -I 0 

Ud/U~ l 

-1 

t=?14 

I Ud/U 

• • ~1 i l l i l l 

0 1 

t=3T14 

Uc/U 
I "  

I 

HORIZONTAL VELOCITY COHPONENTS, Ud/U , Uc/U 

Figure 5. Flow due to an oscillating infinite plane. Horizontal velocity profiles of the phases at 
different instants, a - 0.01, # - 0.01, e - 200, ~o - 0.2. 
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Selecting as before new independent variables t and )1, the x-components of the 
momentum equations become 

d: (1 + ~)/~[Ud, - ( V -  V d ) U d . ]  = f ( a )  (U¢ - Ud) ,  [62] 
of 

f(a)  
I U,~ - ~ (Uc - Ud), [631 c: :~[u~, -  ( v -  v ~ ) u , ~ ]  = ~ ] - o~ 

as in section 4. The boundary conditions in this case are 

t ~ 0 : Ud ( t ,  )1) = Uc ( t ,  rt) - 0, [64] 
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Figure 6. Flow due to an oscillating infinite plane. Horizontal  velocity profiles of  the phases at 
different instants, a - 0.01, ~ - 0.01, E - 100, ~0 - 0.1. 
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t > O : U c ( t , O )  - U ,  

t > 0:  Uc(t, +oo) - Ud(t,  +o~) -- O. 

The Laplace transformed momentum equations are 

(1 + ¢)fl[sU~ - Ud(O, 7) - ( V -  V~)U~] - 

687 

[651 

[66] 

e[sU~ - u~(o, ~) - ( v  - v~)U;] - ! ~ 7  f ( ~ )  (U~ - ~.), 
K l - - a  

[671 

[68] 
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Figure 7. Flow due to an  oscillating infinite plane. Horizontal velocity profiles of  the phases at 
different instants, a - 0.1, $ - 0.01, e - !0, ~ - 0.1. 



where prime denotes differentiation with respect to 7, or 

(1 + ~)B[sUa - ( V -  Va)U'~] = f ( a )  ( ~ ,  _ Ua) ,  
O~ 

fl[sUc - (v - vc)U;] - ! u7 f('~) (U,- U~), 
l - - a  

1 O0 

since 

ua(o, n) - uc(o, n) - o. 

d 

gfl 
p0 

eo 
¢,3 

gfl  

¢t3 
Z 
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- I  0 

m 

I 

688 N APAZIDIS 

-1  0 1 

100 

- I  0 

tO0 

e=TI2 = 

1 -1  0 1 
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Figure 8, Flow due to an oscillating infinite plane. Horizontal velocity profiles of the phases at 
different instants, a - 0.1, fl - 0 .01,  ~ - 10, o~ - 0.01.  

[691 

[701 

[71] 



The boundary conditions in the transform plane are 

fa, 

¢/J 

o 

: ¢  

Uc(s, 0 ) .  --,U [72] 
S 

U~(s, +o~) = U,(s, +~) - 0. [73] 

System [69] and [70] may b¢ reduced to a single ordinary differential equation of the 
third order with constant coefficients for Uc alone. The general solution of this equation is 
obtained by considering the characteristic equation, which has three different real roots 
obtainable in trigonometric form. Two of the roots are positive and the third is negative. 
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Choosing the negative root ~ < 0 (since n > O) and using [72], we obtain the Laplace 
transform of the horizontal velocity component of the continuous phase in the form 

Uc = U eX.. [74] 
s 

The Laplace transform of the horizontal velocity component of the dispersed phase is then 
obtained by means of [70], 

U ~ I  - a  U1 
e ~" - ( V  - V~)Xe x" - a X2 eX,, [75] 

with ~ = ~,(s) being the negative root of the characteristic equation. 
Our next step is to obtain inversions of the Laplace transforms Ua, Uc. However, since the 

dependence on the transform parameter s in formulas [74] and [75] is quite complex, h(s) 
being the root of the third-order algebraic equation obtained in trigonometric form, we will 
be using approximate numerical methods of inversion. 

Figure 10 represents plots of sUa, sU¢ versus the logarithmic transform parameter s for 
some values of the flow variables and the space coordinate 71. Variation of sUa, sU~ occurs 
over several decades of log~os. Such functions are said to vary "slowly" with s and may be 
approximated by series of the form 

f*(t)  - ~ c, exp (-~,t) ,  [76] 
J - I  

(see Cost & Becker 1970). Using the approximation procedure described in detail in Cost & 
Becker (1970), we perform numerical inversions of Ud(s, ,7), Uc(s, ,1) for various values of the 
flow variables and thus obtain velocity profiles of the dispersed and continuous phases at 
different instants, shown in figures 11-16. 

6. SUMMARY AND DISCUSSION 

Three different cases of a streaming motion of a mixture of solid particles with a fluid 
were investigated. The horizontal motion of a mixture in these flows, defined by the 
conditions at the rigid boundary--a horizontal infinite plane--is superimposed on the 
separational motion of the phases in the vertical direction caused by the gravity field. The 
considered flows correspond to the three classical problems in a single-phase case, namely, 
flow over a stationary infinite plane, flow about an oscillating plane, and finally flow in a 
fluid at rest caused by a suddenly accelerated plane. 

In the present investigation, both constituents of a mixture, fluid and solid particles, are 
treated as two superimposed continua with an interaction defined by the Stokes' drag force, 
modified by a factor accounting for a finite volume fraction of particles. The analysis of the 
motion is then performed in a coordinate system, moving in the vertical direction with a 
velocity of an interface between the layer of a sediment settling on the bottom, the rigid 
plane, and the region occupied by the mixture, with a given initial concentration of the 
dispersed phase above. According to Kynch (1952), the concentration of the dispersed phase 
in the mixture may be assumed to remain constant throughout the separation process. Note, 
however, that the assumption of constant concentration does not hold in the case of 
centrifugal separation of a mixture. It was shown by Greenspan (1983) that the concentra- 
tion of the dispersed phase in a mixture is time dependent in a centrifugal force field. Also, 
since we are in the present paper dealing with a suspension of solid particles in a continuous 
carrier fluid and not a mixture of two immiscible fluids, investigated by Greenspan (1983), 
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we are able to specify the form of the correction factorf(ot) accounting for the finite volume 
fraction of the dispersed phase, namely, an expression defined in [8] and obtained by Tam 
(1969) in the case of spherical particles. 

By contrast to the case of single-phase flow, the boundary layer thickness is defined not 
by the viscosity of the fluid phase but rather by the parameters characterizing correlations of 
the phases, such as particle Reynolds number, volume concentration and density ratio. It is 
of importance to remember at this point, however, that the continuum description of a 
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mixture implies the use of the field variables and balance equations, which are obtained 
through an averaging procedure over regions containing a sufficiently large number of 
particles. In the present investigation, the chosen length scale is one particle radius. The 
obtained solutions of the balance equations thus possess a physical interpretation only if their 
variations span regions that are large as compared to particle size. We thus select such 
combinations of the flow variables that give solutions with a scale of variation that is large as 
compared to the microscale. 

In the case of a stationary flow over an infinite rigid plane, the velocity profiles of both 
phases are obtained analytically, and are shown in figure 2. The velocity profiles of the 
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phases separate in the vicinity of the wall only for mixture flows with high density ratios of 
the constituents and low values of the concentration of the dispersed phase (see e.g. figure 2a 
and b). The physical explanation is that because of the great density difference, particle 
inertia prevents the adjustment of the horizontal velocity component to that of a fluid, which 
results in a nonzero horizontal velocity component of the dispersed phase at the interface 
between the mixture and the layer of sediment at the bottom. Wc assume here, however, that 
this velocity component is reduced to zero instantly at the moment of contact of a settling 
particle with the stationary layer of the sediment. At the higher values of the particle 
concentration and lower density ratios, the velocity profiles of the phases coincide (see figure 
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2c-f). This means that in this case particles settle with a zero horizontal velocity component 
on the layer of sediment. 

The next problem considered here is the flow of a mixture near an oscillating plane. As 
before, we assume that the layer of sediment settling on the rigid plane is stationary with 
respect to its horizontal motion and thus is in this case performing harmonic oscillations in 
the horizontal direction. The nature of the boundary conditions suggests the consideration of 
the problem in the coordinate system moving with the vertical velocity component of the 
interface between the sediment and the mixture. The velocity profiles of both phases in the 
mixture are then obtained by an assumption similar to that of single-phase flow, and 
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represent thus two damped transverse waves propagating into the interior of a mixture. The 
wave velocity and the wavelength are in this case a function of the particle Reynolds number, 
concentration, density ratio between the phases and frequency of oscillations. The distance of 
penetration is in the case of a mixture also defined by the parameters defining correlation of 
the phases (Reynolds number, concentration, density ratio) and not just the viscosity of the 
continuous phase and the frequency of oscillations as in the case of single-phase flow. Plots of 
the velocity profiles of the dispersed and continuous phases for various values of the flow 
variables are shown in figures 3-9. 

Finally, a flow in a stationary mixture induced by a suddenly accelerated rigid plane is 
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considered. Here again the investigation is performed in a coordinate frame moving upward 
with a velocity equal to the vertical velocity component of the interface between the sediment 
and the mixture. Horizontal velocity components of the phases at different instants are 
obtained by means of the numerical inversion of the solutions to the Laplace transformed 
momentum equations, and are shown in figures 11-16. In the cases of low concentrations of 
particles and high density ratios of the constituents, we obtain large differences in the 
velocities of the phases near the interface. These velocity differences reduce gradually as the 
velocity profiles of both phases tend to a steady-state distribution, resulting in profiles of a 
stationary form, propagating into the region occupied by the mixture with the velocity of the 
interface between the sediment and the mixture. Penetration of the velocity variation at the 
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boundary thus consists of two stages in the case of a mixture flow. In the first stage, the 
spreading of the velocity variation is a combination of the vertical movement induced by the 
movement of the interface and development of the velocity profiles toward the steady-state 
distribution. In the second stage, when the velocity profiles of the phases are fully developed, 
the velocity variation is transported only by means of the vertical motion of the stationary 
velocity profiles, propagating upward with the velocity of the interface. Duration of the first 
stage of the development depends on the particle Reynolds number, density ratio and volume 
fraction of the dispersed phase and has dimensional values varying from 1.7 • 10 -I s as in 
figure 11 to 1.7 • 10 4 s in figure 16. In the second stage, the depth of penetration of the 
velocity variation after a time t is proportional to the constant velocity of propagation in the 
vertical direction and is thus linearly proportional to t, and not to t lie as in the case of a single 
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fluid. Figure 11 shows that the depth of penetration of the velocity variation caused by the 
moving layer of sediment is ~30 particle radii in case of sand (density ~2 • 103 kg m -3) in air 
and a dilute particle concentration of 0.01. For sand in water, the depth of penetration of the 
velocity variation increases drastically to ~600 particle radii when the particle concentration 
equals 0.4 (figure 15) and to 6000 particle radii at a low concentration of 0.01 (figure 16). 
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